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Abstract 

We formulate the problem of estimating the motion of a rigid object viewed under perspective 
projection as the identification of a dynamic model in Exterior Differential form with parameters 
on a topological manifold. 

We first describe a general method for recursive identification of nonlinear implicit systems 
using prediction error criteria. The parameters are allowed to move slowly on some topological 
(not necessarily smooth) manifold. The basic recursion is solved in two different ways: one is 
based on a simple extension of the traditional Kalman Filter to nonlinear and implicit measure- 
ment constraints, the other may be regarded as a generalized "Gauss-Newton" iteration, akin to 
traditional Recursive Prediction Error Method techniques in linear identification. A derivation 
of the "Implicit Extended Kalman Filter" (IEKF) is reported in the appendix. 

The ID framework is then applied to solving the visual motion problem: it indeed is possible 
to characterize it in terms of identification of an Exterior Differential System with parameters 
living on a Co topological manifold, called the "essential manifold". We consider two alterna- 
tive estimation paradigms. The first is in the local coordinates of the essential manifold: we 
estimate the state of a nonlinear implicit model on a linear space. The second is obtained by a 
linear update on the (linear) embedding space followed by a projection onto the essential mani- 
fold. These schemes proved successful in performing the motion estimation task, as we show in 
experiments on real and noisy synthetic image sequences. 

1 Introduction 

The "visual motion estimation" is concerned with reconstructing the motion of the viewer relative 
t o  the environment from its projections onto the retina (or CCD surface). The task may be 
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separated into two steps: first establish which point on the retina corresponds to which across 
time (correspondence problem), and then estimate the motion of the viewer and the structure of 
the environment from the correspondence. This classification is rather arbitrary; it is convenient, 
however, to  assume that the correspondence has been solved in order to  concentrate on the geometric 
structure of the visual motion problem. For a review of the existing methods for addressing the 
correspondence problem, see for example [2]. 

Visual motion estimation is a key task in many control applications involving the interac- 
tion with the environment, such as autonomous robot navigation [14, 16, 151, visual-based track- 
inglservo [24, 25,371, visual-based manipulation [4,25], docking [28, 151, visual-based planning ell], 
active sensing 6591. In recent years the problem has been addressed using nonlinear estima- 
tion/identification techniques [40, 27, 45, 3, 57, 551. 

In order to  formalize the problem and cast it into a system-theoretic framework, we need to  
specify a "description" for the scene and for the motion of the viewer. Based on which scene 
descriptors are used, the existing methods for motion estimation may be classified as point-based, 
line-based, curve-based or model-based. We are interested in the simplest case when the scene 
is described by a number of feature points in the euclidean 3D space. For line-based schemes 
see 168, 621 and references therein. The curve-based approach has been addressed in [I, 61, 91. 

The point-based methods may be further classified based on the camera model employed. The 
simplest cases assume either parallel projection [65, 64, 63, 511 or ideal perspective projection 
(pinhole model, see [18] for a review). More articulated camera models as general homographies 
allow parallel and perspective projection as a subcase [3, 60, 20, 541. We will be mostly concerned 
with the classical pinhole model, although it is possible to  generalize our schemes to  more general 
camera representations and estimate the camera model along with visual motion (self-calibration, 
see [54, 201). Recent schemes recover projective, non-metric structure and motion independent on 
the  camera parameters [17, 51, 421. 

Motion reconstruction schemes may be further classified based on the data processing technique 
as either 2-frames schemes (see for example [39, 29, 66]), multiframe-batch methods [65, 601 and 
recursive algorithms. 

In the last decade a variety of schemes has been proposed for reconstructing recursively structure 
for known motion [40], motion for known structure [21, 22, 69 or both structure and motion [27, 3, 
45, 57, 551. In this gaper we unify them into a common framework and highlight the limitations 
of the model employed, which motivate the new formalization in terms of identification (ID) of 
Exterior Differential Systems (EDS) [7] which we introduce. 

We will then address a general technique for performing the ID of EDS using nonlinear prediction 
error criteria, and we will apply it to the visual motion problem. We will see how other problems 
in computational vision may be formulated in the framework of ID of EDS and solved with the 
technique presented in this paper. 

Organization of the paper 

In section 2 we will cast the visual motion problem into a system-theoretic framework in terms of 
s t  a te  estimation of a nonlinear dynamical systems with a differentiable state-manifold. Motivated 
by the structural limitation of the model which defines the visual motion problem in the case of 
feature points in the euclidean 3D space, we will develop a new formalization of the problem in 
terms of identification of an EDS with the parameters on a topological manifold, called the "essential 
manifold9'. We will also present two examples of other problems in computer vision which may be 
cast as the identification of an EDS. 



In section 4 we will analyze the estimation problem in general form and develop a suboptimal 
technique for recursive identification of nonlinear implicit systems nonlinear in the parameters using 
prediction error methods (PEM) [58]. The framework is that of approximate maximum likelyhood 
or least squares identification using observers [33, 8, 31, 10, 48, 47, 321, extended to Differential 
Algebraic Equations with parameters on topological manifolds. We use a variation of the Extended 
Kalman Filter for implicit measurement constraints, called IEKF, which is derived in the appendix. 

In section 5 we apply the method to the visual motion problem. We propose three schemes for 
performing the estimation task: the first consists of writing the estimator in the local coordinates 
of the parameter manifold, and then applying the IEKF. Alternatively we write the update in 
the embedding space and project it at each step onto the parameter manifold. A third scheme is 
based on a double iteration and corresponds to the extension of the usual least-squares PEM via 
Gauss-Newton iteration. The theoretical observability/identifiability of such schemes is addressed 
in [52]. 

In section 6 we compare the performance of the three schemes on real and noisy synthetic image 
sequences. 

2 Visual motion estimation 

In this section we formalize the visual motion problem when the structure of the scene is repre- 
sented as a set of feature points in the euclidean 3D space. We restrict our attention to "static" 
environments, or equivalently to portions of the scene which are moving rigidly. In such a case the 
problem is "defined" by the rigid motion constraint and the perspective map. 

2.1 Formulation in terms of state estimation 

Consider a rigid set of feature points in 3D space with respect to some cartesian frame, for example 
T 

the  one moving with the observer. We call X' = [ X Y Z ] . E Et3 the coordinates of the iTH 
point, and we let i = 1 : N. As the camera moves between two discrete time instants, with rotation 
R and translation T ,  the coordinates change according to the rigid motion constraint: 

where motion is represented by (R,T) E SE(3) [43]. 
The camera (or eye) is represented by a map from the 3D space onto some 2D surface. We 

adopt for simplicity the ideal perspective projection model [53: 

we measure x up to some error: 

The  representation thus proposed is the very simplest one can immagine; however, we will show 
tha t  it is not the most appropriate for motion estimation. 

The equations (1,2) may be regarded as a dynamical model describing the motion of points in 
3D space, having a projection as measurement equation. Motion is the input to the system, and 
hence the estimator should "invert" the model in order to reconstruct motion from time varying 



projection of feature points. Since the initial condition (structure at  time zero) is not known, we 
have a combined "inversion/estimation" problem. It can be shown [52] that any inverse system 
for (1,2) is essentially instantaneous, hence it does not exploit recursiveness and its benefits. This 
is due to  the fact that the model above is driftless [30,44]; a common trick is then to use dynamic 
extension. We augment (1) with 

nR E SO(3) , nT E EL3. Once inserted motion into the state dynamics we have transformed the 
motion problem into a state estimation task for a dynamical system with unknown inputs, since 
we do not know nR and n ~ .  

If we have a dynamical model available, as for example when the camera is mounted on a 
moving vehicle, we may exploit it in place of (3). In lack of a mechanical model we may imply a 
statistical model, for example a fixed order random walk. The extreme case is nT = 0, nR = 0, 
which corresponds to  constant velocity motion. 

A common model is a first order random walk, which describes a brownian motion. For instance 
we may assume nT E N(0,  RT) and nR A e"" E SO(3) with f i ~  E N(O,Rn). All of these are 
modeling assumptions, and they must be verified a posteriori. 

A fundamental issue in deriving a state estimator (observer) is of course observability [30, 44, 
34, 35, 36, 501. The observability of the motion problem is addressed in [52]. The system under 
investigation (1,2,3) has the peculiarity of not only having a linearization which is not observable, 
but of also being non locally weakly observable. We need to impose metric constraints on the state 
manifold in order to achieve local observability; furthermore the observable manifold is covered 
with a high level of lie-differentiations, which makes the observer porely conditioned. 

Note that the model described above is "block-diagonal" with respect to the structure parame- 
ters Xi, and any observable motion combination can be observed regardless the number of visible 
points. Indeed it is strongly intuitive that the more points are available, the more robust the per- 
ception (estimate) of motion should be. Also note that, once motion has been estimated, structure 
is linearly observable [52] from the model (1,2), and hence a simple EKF will suffice to estimate 
it, provided that we keep an explicit representation of the second order statistics of the motion 
estimation errors 145, 571. 

These considerations motivate the introduction of a new model, based upon a motion represen- 
tation which dates back to Longuet-Higgins 1391. 

2,2 Formulation as identification of an exterior differential system 

A rigid scene is moving with T(t), R(t) between two time instants. Then it is immediate t o  see 
(fig. 1) that the vector X ,  describing the coordinates of the generic point a t  time t ,  the vector X' 
of coordinates at  time t + 1 and T,  are coplanar, and therefore their triple product is zero. This is 
true of course also for x ,  x' and T,  since x is the projective coordinate of X and therefore the two 
are  coincident in Kt3, interpreted as the "ray-space" model [49]. When expressed with respect to  a 
common reference, for example that at time t, we may write the triple product as' 

' ~ o t e  that we model rigid motion with T, R s.t. X' = R(X - T), for consistency with the notation of [39]. 



The Essential Consmaint for rigid Motion 

D 

T 
time t time t+dt 

Figure 1: The essential constraint 

It turns out that the above constraint is not only a consequence of rigid motion, but it also suffices 
to  characterize it, once eight or more constraints are given [41, 391. The operator 

belongs to so(3) [43]. Following Longuet-Higgins [39] we call 

so that the above constraint, which we now call the "essential constraint", becomes 

Estimating motion corresponds to identifying the model 

which is in the form of an Exterior Differential System [7]; the parameters T, R are encoded in Q. 
Since the constraint (5) is linear in $, we use the (improper) notation 

where x is an N x 9 matrix combining x;,x( and Q is interpreted as a nine dimensional vector. 
The generic row of x has the form [xlx: x2x: xi XIX; 22s; x; XI x2 1 1. 

2.2.1 The Essential Space 

A rigid motion may be represented as an element of the Lie group SE(3), which is naturally 
embedded in lR4X4 via homogeneous coordinates: 



We have indeed seen that rigid motion may be encoded using the essential constraint (5) based 
on the 3 x 3 matrix Q A R(TA) C R9. Since we can reconstruct translation only up to a scale 
factor, we may restrict Q to  belong to RP8 instead than R9. It is customary to set the norm of 
translation to  be unitary; this can be done without loss of generality, as long as translation is not 
zero. The zero-norm translation case can be dealt with separately, and we will discuss it later. Now 
for simplicity we assume 11Q112 = llTll = 1. The matrix Q belongs to the space 

which is called the essential space. The essential space encodes rigid motion in a more compact 
way than SE(3),  the price being that we loose the smooth group structure. Indeed, as shown 
in [55, 521, a slight modification of ,!? proves to have the structure of a topological manifold. For let 
d,,,,(Q) be the triangulation function which gives the depth of a point from its motion Q and its 
projective coordinates x, x'. Then E G ,!? n d,:,(Ri) is a topological manifold called the "essential 
manifold" [55]. Call 

a chart of the local coordinates atlas of the essential manifold ( see [55] for an explicit character- 
ization of @); [V , RIT represent the canonical (exponential) local coordinates of (T, R) € SE(3) 
via 

E also has the structure of an algebraic variety [41], which we will not discuss in this paper. 

2.2.2 Motion representation on the essential space 

A rigid motion with unit norm translation may be represented as an element of the essential 
manifold E. For non-unit translations (but still positive norm), it is sufficient to scale Q to  Q/IITII, 
since the singular values of Q are {IITII, [IT 11,0} (see appendix B). At each time instant we have a 
set of N constraints in the form 

x,l(t),,(t)Q(t) = 0, 

therefore Q lies at  the intersection between the essential manifold and the linear variety X;~tl,x(t)(0) 
(see fig. 2). 

Note that even after imposing unit norm there is still a sign indeterminacy in Q ,  which accounts 
for the two solutions Q1 and Q2. These solutions become four when transformed to local coordi- 
nates. These ambiguities can be overcome by imposing the positive depth constraint as it is done 
in the definition of the essential manifold [52, 551: in fact, out of the four different combinations of 
R and T ,  only one corresponds to points which are in front of the observer [67, 23, 46, 191. 

As time goes by, the point Q(t), corresponding to the actual motion, describes a trajectory on 
E (and a corresponding one in local coordinates): 

T h e  last equation is in fact just a definition of the right-hand side, since we do not know nQ(t). 
For now we will consider the previous equation as a discrete time dynamical model for Q on the 



essential manifold, having nQ as unknown input. If we accompany it with the essential constraint, 
we get 

Q(t + 1 )  = Q(t)  + n$(t) $ E E  
Q = x,yt),,(t)Q(t) (8)  
yi = xi + n; V i = 1  ... N 

where njt) E N(O, R,). Note that now the visual motion problem is defined as tire estimation of 
the state of the above model, which is defined on the essential manifold. As it can be seen the 
system is "linear" (both the state equation and the essential constraint are linear in Q);  however, E 
is not a linear space. In the section 4 we will develop a general tool for addressing the identification 
problem. 

3 Other problems which may be formulated as ID of EDS 

In the present section we consider, as an example, two additional problems which may be cast in 
the  framework of identification of exterior differential systems with parameters on a manifold. 

The first problem is "camera self calibration", which consists of the dynamic estimation of the 
camera model along with the motion parameters . It has been shown [54] that the problem may 
be formulated as an extension of the scheme derived in the previous section when the essential 
manifold is substituted by the space of the "fundamental matricesfl[20, 541. 

The second problem is the recovery of the direction of translation using subspace methods: 1531 
provides a way of formalizing the problem as identification of an exterior differential system with 
parameters on a sphere [26, 531. 

3.1 Dynamic self-calibration 

In so far we have represented the camera as an ideal central projection of unit focal length. When 
the  camera model is a more general projective transformation in IRP2, eq. (5) does not hold. 



Figure 2: Structure of the motion problem on the Essential Space 

However, a similar constraint may be derived based on the epipolar geometry as 

The matrix F is called "fundamentali matrix"; it defines the relation between each point i and its 
corresponding epipolar line 1201. If the camera is represented (in homogeneous coordinates) as a 

3 x 4 matrix [ A 1 0 ] where 

fs, 0 -io 
Q fsy -j~ 
0 0 1  

is the internal parameter matrix2, then it can be shown that 

is an essential matrix. 
Faugeras et al. [20] propose to estimate the matrix F from the constraint (9), and then impose 

the structure of the fundamental matrix (10) a posteriori by solving a set of polynomial equations 
known as Kruppa equations. Such equations are indeed ill conditioned, and the scheme is very 
sensitive to noise. Furthermore, temporal coherence of the camera model is not exploited. 

If we substitute (10) into (9) we have a model 

f is the focal length, (io, jo) the coordinates of the optical center and (s,, sg) the pixel sizes along the image 
plane coordinates. The deviation from 90° of the angle between the optical axis and the CCD surface is usually on 
the order of lo, and we may therefore neglect it. 



Estimating the camera parameters, along with rigid motion, may then be formulated as identifi- 
cation of the above exterior diflerential model, where the parameters are on the manifold E x AF,  
and A F  is the set of affine transformations of IR2 represented in homogeneous coordinates. This 
formulation has been derived in [54]. 

3.2 Recovering rigid motion using subspace methods 

Consider the following expression of the motion field: i i ( t )  = [Ai(xi, V(9 ,4 ) )  1 &(x)] 
- 

where A(x, V) 2 2 ~2 ] and V t S2 is represented in local coordinates as V(fl.4). f? 2 

- 
1 TI. [ -,Tgy2 ::2 iy 1 . if we observe N points we may write k = C(V, x)(&, . . . , %, C?] - 

@dT7 where 

Under the usual rank conditions, we may compute the least squares approximation of d as 

and  therefore the motion field specifies the constraint [26] 

where 1 indicates the orthogonal complement. Heeger and Jepson [26] propose to estimate the 
direction of translation by minimizing the two norm of the above constraint over V E S? They 
perform such a minimization by extensive search over all possible directions 8,4. 

Indeed it is immediate to  see [53] that the problem of estimating the direction of translation 
may be rephrased as the problem of identifging the following exterior difirential system, with 
parameters V on a sphere: 

V , x ) i =  0 V E S2 
yi = xi +. ni 'di. 

This problem can be solved in a principled manner using the results of the next section, without 
requiring any extensive search or sampling of the sphere. See [53] for more details. 

4 Identification of nonlinear implicit systems with prediction er- 
ror criteria 

Suppose {x(t)} E lEtN is a trajectory on a linear state-space, which is subject to an implicit dynamic 
constraint of the form 

h [x(t), dx(t), a] = O x(0) = xo (11) 



where a E M are some unknown parameters which can move (slowly) on a topological (not neces- 
sarily smooth) manifold. Call a + $(a) E Rm the local coordinates correspondent of a. Suppose 
we are able to measure x up to some white, zero-mean gaussian noise: 

~ ( t )  = x(t) + n(t) n E N(0, R,). 

We are interested in identifying the parameters a recursively from the measurements {y(t)) based 
on the minimization of some cost function of the prediction error (for a classical treatment of PEM 
for linear explicit models see for example [58 ] ) .  

A common paradigm for PEM identification consists in forcing a Kalman Filter to work as a 
parameter estimator. The state of the filter is augmented with the unknown parameters, which are 
described using a low order random walk model. The sequel of modeling operations is described as 

from {x(t)) and {i = ax) identify a via observing = a(t) + n, 
{$:+a:+ f i  

where y, yf are noisy measurements of x, j: and ii is a residual which can be characterized in terms of 
the noise n. Our aim is to generalize this paradigm to nonlinear implicit dynamics and parameters 
living in topological manifolds. In the following we will consider discrete dime dynamics, which fall 
in the same scheme described above, once we substitute i, yf with x(t + I), y(t + 1). 

First we proceed in analogy with the linear-explicit case: we describe the local coordinates of the 
parameters as first order random walk, and use the dynamic constraint as an implicit measurement 
constraint: 

a ( t  + 1) = a(t)  + nff(t) a(0) = a0 

n(t), ~ ( t  - 1) - n(t - I), $-l(a(t))] = 0 (12) 

where we have substituted the index t with t - 1 in the measurements {y) (or equivalently the 
estimator runs with one step delay). The noise process {n(t)) induces a residual in the measurement 
equation: if we approximate x(t) with y(t), in general we will observe k [y(t), y(t - l), a] = ii, where 
ii depends on n(t), n(t - I), y(t), y(t - 1) and a. This residual is exactly the prediction error (or 
pseudo-innovation) when choosing a least-squares criterion in the PEM. 

T 
Let us collect the measurements into a vector gT(t) + [ yT(t) yT(t - 1) ] , and idem with 

n(t) G [nT(t) nT(t - 1)IT. Our task is to estimate a from the model 

In order to follow the course of the linear-explicit case, we have to solve a number of problems: 

Rn6(t - S) R,S(t - s + 1) 
1. the noise n is not white, since I3[?i(t)nT(s)] = 

R,S(t - s - 1) RnS(t - S) I 
2. the error ii does not appear additively in the measurement equation 

3. the measurement equation is nonlinear and implicit. 

The Extended Kalman Filter (EKF) [33,8,31] is a general-purpose extension to nonlinear systems 
of the traditional Kalman Filter. It is based on a variational model about the best current trajectory. 
The systems is linearized at each step around the current estimate in order to calculate a correcting 
gain; the update of the previous estimate is then performed on the original (nonlinear) equations. 
In order to solve step 3. we need to further extend the EKF to cope with the implicit measurement 



constraint. This is done in appendix A. We call the result Implicit Extended Kalman Filter 
(IEKF); some variations of the scheme have been used in different applications in the last years, 
see for example [13]. The derivation is based on the simple fact that the variational model about 
the current trajectory is linear and explicit, so that the a pseudo-innovation process may be defined 
analogously to the explicit case. Note that the local coordinates chart of the parameter manifold $ 
enters into the measurement equation, and therefore it is differentiated in order to compute the gain. 
However, the update equation is calculated on the actual nonlinear model, so that discontinuities 
of the derivative of $-I, which may happen when switching from one chart to another, are well 
tolerated, 

The derivation of the IEKF in appendix A also solves step 2. The residual of the measurement 
equation ii, which is in fact the pseudo-innovation of the filter, is characterized in terms of f i ,  

provided that the last is white, zero-mean and uncorrelated with n,. 
In the following section we will show how to whiten ii and therefore reduce the problem to a 

form suitable for using the IEKF. Later we will see how the problem simplifies by assuming that n 
is white. 

4.1 Uncorrelating the model from the measurements 

Consider a first order expansion of the measurement equation about the point y(t), a(t):  

where we have defined 

Here the residual ii(t) = -D+(t)n(t) - D-(t)n(t - 1) is clearly correlated. In order to estimate the 
dynamics of n(t), we may insert it into the state dynamics: call z(t) 2 n(t - 1). 

where we have defined w(t) . -D+(t)n(t). Now the measurement error w is white; however, 
i t  is correlated with the model error v G [nz, nTIT. We may therefore project the model error 
onto the span of the measurement error W(w) in order to make the two orthogonal. We define 
@(t) h v(t) - E[v(t)JN(w)]. Since w(t), n(t) and n,(t) are white, it is easily seen that E[v(t)l W (w)] = 
E[v(t)l w(t)] = C,,C;' w(t). C,, and C,  are variance/covariance matrices. If we define 

i t  is easy to see that c,:,,c;' = S(t)R-'(t); furthermore Co ~ ( t )  = Q(t) + ~(t)&-'(t)sT(t).  
Now .ij t v - SR-lw is by construction ortlaogonaj (uncorrelated) to w. 



4.2 A model for PENZ identification of nonlinear implicit models 

In the previous paragraph we have derived a substitution for the model error which is by construc- 
tion uncorrelated with the measurement error. Therefore we may write a new model which satisfies 
the conditions of appendix A: 

where we have defined 

By applying the results of appendix A, we have a pseudo-optimal PEM identification scheme 
described by the following iteration: 

Prediction step 

"( t  + l l t )  = "(tlt) "(010) = a0 

i ( t  + l l t )  = K ( t )  (h  [g(t), &(tlt)] - D-(t) i ( t / t ) )  i(Ol0) = 0 (23) 
~ ( t  + i l t )  = ~ ( t ) ~ ( t l t ) ~ ~ ( t l t )  + O(t) ~ ( 0 1 0 )  = p0 

where F - I and C( t )  ; 

Update step 

where 

L & PC~A-'  

A CPCT + D+(t)Rn(t + l )DT(t)  
r 2 I - L C  

Note that we are trying to estimate a process ( z ( t ) )  which is nearly white noise (n( t )  is correlated 
only within one step). Furthermore if we expect a large number of measurement components az ,  
the cost in updating a large state and tuning a large number of model-variance parameters may be 
relevant. In practical applications the approximation ii as white noise are often best conditioned. 
In the following section we show how the structure of the filter simplifies in such a case. 

4.3 A simplified version: approximate Least Squares PEM identification 

In this section we report the equations of the parameter estimator which are obtained supposing 
that  the residual fi is white. This correspond to applying the results of appendix A directly t o  the 
model of eq. (13): 



Prediction step 
&(t + llt) = &(tlt) &(0]0) = a0 

P( t  + Ilt) = P(tlt) + R*(t) P(OI0) = Po (28) 

Update step 

where now we the quantities L, A and r are defined according to appendix A. Note that we have 
reduced the size of the state from n + m down to m. 

Detecting outliers 

Note that each component of the pseudo-innovation is a measure of the consistency of each datum 
with the current parameter estimates. This proves useful when applied to the motion problem 
because it allows us to  easily segment the scene into a number of independently moving objects [56]. 

4.4 An iterative scheme for computing the update 

T h e  IEKF update seen in the previous section may be substituted with a Gauss-Newton iteration, 
as it is customary in recursive ID of linear models: 

where hNn = ~ : ( & ( k ) )  and Jh is the jacobian of h. 
Note that at  each fixed time we could perform a Newton-Raphson iteration on the function 

h(y, a ) ,  for which local convergence results are known as well as bounds on the convergence rate. 
This suggests, as an alternative to the IEKF, to fix t and perform a Newton-Raphson iteration 
along the k coordinate. Once this is done we propagate the estimate across time with an iteration 
which now is linear, and has all the desirable asymptotic properties. 

4.4.1 Iteration at each fixed time 

At  each time instant a new set of measurements y becomes available. The dynamic constraint 
imposes 

h[y(t), a] = 0 vt 

Define T,h : Rm -t RN to be the derivative of the map h and Jh (a )  the Jacobian matrix calculated 
at the point a. Suppose that there exists some a* such that h(y(t), a*) = 0 for our particular (fixed) 
t. Then we may write a first order expansion around the point a*, starting from some point a0 (we 
neglect time indices for the remainder of this section); the resulting iteration, which is obtained by 
neglecting the second order term of the expansion, is defined by 

At  each iteration we solve for Y the linear problem 



and then define a k + 1  A a k  + Y. In general, also due to noise, we can expect h[ak] 4 dm(Jh(ak)), 
so that  we will be seeking for Y such that Jh(ak)Y is the projection of h[ak] onto the range space 
of Jh(ak):  

ak+l a k  - L ~ ~ ( k ) h [ a k ] .  

where LNR(k) ( ~ ~ ( a k )  Jh(ak))-l J;(ak). The map defined by the right-hand side of the above 

equation is contractive as long as Jh (ak )  has full rank, in which case the scheme is guaranteed to  
converge to  some (possibly local) minimum. 

At each time the scheme will converge to some a*, which best explains the noisy measurements 
y;, y;l; hence we have a* = a + n ,  where n ,  is a noise term whose variance can be inferred from the 
variance of ni and a linearization of the scheme about zero-noise. The estimate obtained at each 
fixed time, together with its variance, is fed to a time-integration step, which we describe next. 

4.4.2 Propagation along time: disambiguation of local minima 

At each fixed time the iteration along k converges to a fixed point ar(t) ,  then we may propagate 
the information across time with a similar iteration: 

which implements a linear Kalman filter based upon the model 

where no is the error of the random walk model for motion, which we assume to  be white zero-mean 
and gaussian, and n, is the error made by the fixed-time iteration. L is the usual linear Kalman 
gain [33, 311. The above model has all the desirable properties, as it satisfies the conditions of the 
fundamental theorem of the asymptotic theory of Kalman Filtering. 

Suppose now that the k-iteration has converged to a local minimum, which is compatible with 
the current observations. At the next step the t-iteration will predict an estimate which is in 
general no longer compatible with the current observations. This should help to disambiguate local 
minima as the measurements accumulate in time. 

5 Application to the visual motion estimation problem 

We have seen in the previous sections that motion estimation may be regarded as estimation of the 
state of a system of a difference equations on the essential manifold having unknown inputs. 

The first approach we describe consists in composing equations (8) with the local coordinate 
chart a, ending up with a nonlinear dynamical model for motion in IR5. At this point we have to  
make some assumptions about motion: since we do not have any dynamical model, we will assume 
a statistical model. In particular we will assume that motion is a first order random walk (brownian 
motion) i n  IR5 (see fig. 3 left). The problem then becomes that of estimating the state of a nonlinear 
system driven by white, zero-mean gaussian noise. This will be done using the technique developed 
in. the previous section. 

In the second approach we change the model for motion: in particular we assume motion t o  be a 
first order random walk i n  lEtg projected onto the essential manifold (see fig. 3 left). We will see that 
this leads to a method for estimating motion via solving at each step a linear estimation problem 



I Local cooldinates estimator 

Figure 3: (Left) Model of motion as a random walk in R5 lifted to the manifold or as a random 
walk in R9 projected onto the manifold. (Right) Estimation on the Essential Space 

in the linear embedding space and then "projecting" the estimate onto the essential manifold (see 
fig. 3 right). 

It is very important to  understand that these are modeling assumptions about motion which 
can be validated only a posteriori. In general we observe that the first method solves a strongly 
nonlinear problem with techniques which are based upon linearization of the system about the 
current reference trajectory, so that the linearization error may be relevant. The second method 
does not involve any linearization, while it imposes the constraint of belonging to  the essential 
manifold in a weaker way. This approach has indeed a very transparent structure which can be 
studied in full detail. 

The third method is based upon splitting the iteration according to the recursive Gauss-Newton 
scheme illustrated in the previous section. 

The next three sections are devoted to describing these three techniques. Note that each method 
produces, together with the motion estimates, the variance of the estimation error, which is to  be 
used by the subsequent modules of the structure and motion estimation scheme [57]. 

5.1 Local coordinates estimator 

Consider composing the system (8) with the map 9: 

where T is expressed in spherical coordinates for radius one, for convenience of representation, 
Then the system in local coordinate becomes 

As we said we model motion { J }  as a first order random walk: nr(t) E N(0,  Rt) for some RE which 
is referred to as variance of the model error. While the above assumption is rather arbitrary and 
can be validated only a posteriori, it is often safe to assume that the noise in the measurements 
y( t )  is a white zero-mean gaussian process with variance R,. 

The system above is now in a form suitable for using an Implicit Extended Kalman Filter (EKF). 
a Finally the equations of the estimator can be summarized: call C (9) and D + ( ax ) . 



Prediction step: 

Update step: 

Gain: 

Innovation variance: 

Note that P( t ( t )  is the variance of the motion estimation error which is used as variance of mea- 
surement error by the subsequent modules of the motion and structure estimation scheme. This 
formulation was first introduced by Di Bernardo et al. [13] in a slightly different form. 

5.2 The essential estimator 

Suppose that motion, instead of being a random walk in R5, is represented in the essential manifold 
as the "projection" of a random walk through Et9 (see fig. 3). The "projection" operator onto the 
space E is denoted by pr<E>(.): 

where U,V are defined by the Singular Value Decomposition of M = U C V ~ .  The fact that 
this operator maps onto the essential manifold is proved in appendix B. Note that the projection 
minimizes the Frobenius norm and the 2-norm of the distance from a point in R~~~ to the essential 
manifold [23, 41, 691. 

Now we define the operator $ that takes two elements in sums them and then projects 
the result onto the essential manifold: 

where the symbol + is the usual sum in With the above definitions our model for motion 
becomes simply 

Q(t* 1) = s ( t )  @ n ~ ( t )  (43) 



where ng( t )  E N(0 ,  R,,) is represented by a white zero-mean gaussian noise in 8'. If we couple 
the above equation with (8) we have again a dynamical model on an euclidean space (in our case 
Etg) driven by white noise. The Essential Estimator is the least variance filter built for the above 
model, and corresponds to a linear Kalman filter update in the embedding space, followed by a 
projection onto the essential manifold. Note that in principle the gain could be precomputed offline, 
for each possible configuration of motion and feature positions. 

Prediction step: 

Update step: 

Gain: 

5.3 2-D fixed-point estimator 

At each time instant a new set of measurements becomes available in the form of position of 
projected points onto the image plane, encoded in ~ ( t ) .  The essential constraint imposes 

The Gauss-Newton method generates the iteration 

At each iteration we solve for Y the linear problem 

and then define tk+' G tk + Y .  

5.4 Identifiability of rigid motion 

The theoretical observability/identifiability of the models thus refined is addressed in [52]. It is 
proved that the model is globally observable once the viewer does not move on a quadric surface 
which contains all the visible points. Note that such a condition is satisfied almost always due to  
noise in the measurements. 



5.5 f irther issues 

Insofar we have assumed that IlTll # 0. It may be shown that there is no loss of generality 
in this assumption [55]. In fact, due to the noise in the measurements, there will be always a 
translation compatible (in least squares sense) with the observations, The scheme automatically 
scales translation to  unit norm and the inverse depth. The issue is discussed in [55]. 

The scheme may be further extended to more general camera models in order to estimate camera 
internal parameters along with visual motion (camera self-calibration). See [54] for details. 

The essential filters are used in deriving a scene segmentation method based on 3D motion, 
which proved successful in extreme experiments such as the segmentation of the Ullmann scene of 
two transparent cylinders counter-rotating one inside the other [56]. 

6 Experimental assessment 

We have tested the described algorithms on a variety of motion and structure configurations. We 
report the simulations performed on the same data sets of [57]. These consist of views of a cloud of 
points under a discontinuous motion with singular regions (zero-translation and non-zero rotation) 
and are described in [57]. Gaussian noise with 1 pixel Std has been added to the measurements. 
Simulations have been performed with a variable number of points down to 1 point for constant 
velocity motion, and show consistent performance. 

The local coordinates estimator 

In fig. 4,5 we show the three components of translational and rotational velocity as estimated by 
the local coordinate estimator. Convergence is reached in less than 20 steps, Tuning has been 
performed, as with the other schemes, within an order of magnitude, and the Std of the estimation 
error are reported in the tables below. It must be pointed out that we have observed a better 
behavior by increasing the variance of the pseudoinnovation. This is due to the fact that the 
EKF relies on the hypothesis that the measurement noise is white and the linearization error is 
negligible, while in this case it is not. Initialization is performed with one step of the traditional 
Longuet-Higgins algorithm. The computational cost of one iteration os of about 100 Kflops for 20 
points. 

Note that if we have available some dynamical model for motion we may easily insert it into 
the  state model. 

The Essential estimator 

In  fig. 8 we show the 9 components of the essential matrix as estimated by the essential estimator. 
convergence is 4 times slower than the local coordinate version, but each step is 10 times faster. Note 
tha t  in principle the gains may be precomputed oaine, for each possible configuration of points in 
the  image plane. We have noted step-like convergence with plateaus followed by switching regions. 
These correspond to  switching of the first two eigenspaces of the SVD of Q .  When brought t o  local 
coordinates we have estimates for rotation and translation 6,7. It is noted that the homeomorphism 
@ may have singularities due to  noise when the last eigenspace is changed with one of the other 
two. This causes the spikes observed in the estimates of motion. However, note that there is no 
transient to recover, since the errors do not occur in the estimation step, but in transferring to  
local coordinates. The switching can be avoided by a higher level control on the continuity of the 
singular values. The computational cost amounts to circa 41 KAops per each step for 20 points. 



Translatiooal Velocity: local coordinates (solid) vs. auth (dotted) 
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Figure 4: Components of translational velocity as estimated by the local coordinates estimator. 
The ground truth is shown in dotted lines. 

The 2-D iteration 

The performance of the 2-D iteration is reported in fig, 9,lO. This scheme groved very accurate 
after proper initialization, even though the error analysis used for calculating the variance of the 
estimates at each fixed time was approximate. Speed may be adjusted by varying the number of 
iterations at  each fixed time. We have noticed that this converges after a number of steps between 
3 and 7. The cost of the scheme for 7 iterations and 20 points is 100 Kflops. The simulations 
reported were done using a constant variance of the error of the k-iteration, and hence show larger 
errors than the other schemes. 

We now summarize the performance of the three schemes: mean and Std are computed between. 
time 30 and 50 for the local coordinate scheme and the 2-D iteration, while between time 150 and 
200 for the essential estimator. 

Experiments on seal image sequences 

Scheme 
Local 
Essential 
2-D 

Qx 
M:.0008 Std: .0022 
M:-.0008 Std: .0004 
M: .2156E-3 Std: .0034 

fly 
M:.0002 Std:.0002 
M: 3.99493-6 Std: .0002 
M: .2261E-3 Std: .0006 

Q Z  
M:-.0002 Std:.0008 
M: -1.61073-5 Std: .0004 
M:.0073E-3 Std:.0006 



Rotational Velocity: local coordinate8 (solid) vs. truth (dotted) 
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Figure 5: Components of rotational velocity as estimated by the local coordinates estimator. 

We have tested our schemes on a sequence of 10 images of the rocket scene (see fig 11). There 
are  22 feature points visible, and the standard deviation of the location error on the image plane 
is about one pixel. The local coordinates estimator has a transient of about 20 steps to  converge 
from arbitrary initial condition. Hence we have run the local estimator on the 10 images starting 
from zero initial condition, and we have used the final estimate as initial condition for a new run, 
whose results we report in figures 12-14. We did not perform any ad hoc tuning, and the setting 
was the same used in the simulations described at the previous paragraphs. In fig. 12 we report 
the  6 motion components as estimated from the local coordinates estimator and the corresponding 
ground truth (in dotted lines); the estimation error is plotted in figure 13. As it can be seen the 
estimates are within 5% error, and the final estimate is less than 1% off the true motion. Finally 
in fig.14 we report the norm of the pseudo-innovation of the filter, which converges to  a value of 
about in less than 10 + 5 steps. 

In this experiment we have used the true norm of translation as the scale factor. We have also 
run simulations in which the scale factor was calculated by updating the estimate of the distance 
between the two closest features, as in the experiments described in the previous paragraphs. In 
this case, however, convergence is slower, as the innovation norm reaches regime in about 20-25 
steps. 

7 Conclusions 

We have proposed a novel formulation of the visual motion problem in a system theoretic framework 
a s  the identification of an exterior differential system with parameters on a topological manifold. 
We have first addressed the general identification problem using nonlinear prediction error criteria, 
and then applied the results to the visual motion problem. We have shown that other tasks in 
computer vision may be formulated as the identification of exterior an differential system with 
parameters on a manifold and solved in a principled manner. 



. Translational Velocity: Ersential astimator (solid) vs. truth (dotted ) 
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Figure 6: Components of translational velocity as estimated by the essential estimator. Note the 
spikes due to  the local coordinates transformation. Note also that they do not affect convergence 
since they do not occur in the estimation process, but while transferring to local coordinates. 

The proposed schemes prove very accurate and robust, as well as computationally light, as 
we show in the experimental section. Easy extensions of the schemes allow solving the camera 
self-calibration problem and the 3D motion-based segmentation. 

Acknowledgements 

Mre wish to  thank Prof. J.K. Astriim for his discussions on implicit Kalman filtering, Prof. Richard 
Murray and Prof. Shankar Sastry for their observations and useful suggestions. Also discussions 
with Michiel van Nieuwstadt and Andrea Mennucci were helpful, as well as the suggestions of Prof. 
John Doyle and Prof. Manfred Morari. 



Rotational Velocity: Essential estimator (solid) vs. Wth (dotted) 
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A Extended Kalman filtering for Implieit Measuremend Con- 
straints 

We are interested in building an estimator for a process ( a )  which is described by a stochastic 
difference equation 

a(t  + 1) = f ( a ( t ) )  + v( t )  ; a(t0) = a0 

where v( t )  E N(0,  Q v ) .  Suppose there is a measurable quantity x( t )  which is linked to a by the 
constraint 

h[a(t) ,  x(t)] = 0 Vt.  (52 )  

We will assume throughout f ,  h E CT ; T > 1. Usually x is known via some noisy measurement: 

where the variance/covariance matrix R, is derived from knowledge of the measurement device. 
The model we consider is hence of the form 

Construction of the variational model about the reference trajectory 

Consider at each time sample t  a reference trajectory G(t) which solves the difference equation 

The linearization of the measurement equation about the point (&( t ) ,  y(t)) is 

where 

Exploiting the fact that h[a, x] = 0, calling 6a(t) G a( t )  - ~ ( t )  and neglecting the arguments in C 
and Dl we have, up to  second order terms 



Prediction Step 

Suppose at some time t  we have available the best estimate &(tlt); we may write the variational 
model about the trajectory G(t) defined such that 

For small displacements we may write 

where the noise term @(t)  may include a linearization error component. 
Note that with such a choice we have S&(tJt) = 0 and 6&(t + 1lt) = F(G(t))G&(tlt) = 0,  from 

which we can conclude 
&(t + llt) = 6(t  + 1 )  = f (&(t))  = f(&(t/t)). (5'3 

The variance of the prediction error S&(t + l l t)  is 

where = var(G). The last two equations represent the prediction step for the estimator and are 
equal, as expected, to  the prediction of the explicit EKF [33, 31, 81. 

Update Step 

At time t  + 1 a new measurement becomes available y(t + I ) ,  together with the prediction &(t + 1 It) 
and its error variance P(t + llt). Exploiting the linearization of the measurement equation about 
6 ( t  + 1) = &(t + l i t) ,  we obtain, letting & i. &(t + l ( t )  and y - y(t -/- l), 

h[&, y] = -C(&, y)Sa(t + 1) - n(t + 1) (58) 

where we have defined n - D(&, y)w(t + 1). This, together with the equation (55) defines a linear 
and explicit variational model, for which we can finally write the update equation based on the 
traditional linear Kalman filter: 

where 

Since S&(t + l l t )  = 0 and S&(t + llt + 1 )  = &(t + llt + 1) - &(t + l l t) ,  we may write the update 
equation for the original model: 

In this formulation the quantity h [&(t + ljt), y(t + I ) ]  plays the role of the pseudo-innovation. The 
noise n defined in (58) has a variance which is calculated from its definition: 

The implicit Kalman filter was used by other researchers such as Darmon 1121, Faugeras [38, 691 
and Heel [27]. 



B Projection onto the essential space 

We have defined the projection operator onto the essential manifold without proving that the result 
is in fact an element of the essential manifold. In fact the following theorem, which was first stated 
by Faugeras in 1990 [23, 411, shows that a characterizing property of the essential manifold is that 
its elements have two non-zero equal singular values and a zero singular value. 

Theorem B.l . 
Let Q = U C V ~  be the SVD of an element of GL(3). Then 

Proof: 

(3) let Q = RSlR E S0(3) ,  S E so(3); a(Q), the set of singular values of Q ,  is such that a(Q) = 

d m .  Next observe that Q Q ~  = RS'sT.RT = SsT = -S2. Also VS E so(3)3!T I S = 
(TA), and the singular values of S2 are (0, I(Tlr2). Hence if Q E E ,  it has two equal 
singular values and a zero singular value. 

(e) let Q = U C ~ V ~  for some orthonormal U, V and for some A. Let furthermore Rz(q) be a 
rotation of % about the Z axis, then 

Now call R U R ~ ( $ ) ~ V ~  and S V R Z ( $ ) C ~ V ~ ;  it is immediate to see that R R ~  = 
RTR = I3 and ST = Ls, hence the claim. Q.E.D. 
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Figure 8: Components of the essential matrix as estimated by the essential estimator. Note that 
there are no spikes and the estimate is smooth. Note that the estimates between time 200 and 300 
are not significant, as the ground truth (dotted line) is scaled to zero. 



Translational Velocity: 2D estimator (solid) vs. truth (dotted) 
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Figure 9: Components of translational velocity as estimated by the double iteration estimator. 
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Rotational Velocity: 2D estimator (solid) vs. truth (dotted) 
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Figure 10: Components of rotational velocity as estimated by the double iteration estimator. 



Figure 11: One image of the rocket scene. 

Motion Estimates for the rocket sequence 
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Figure 12: Motion estimates for the rocket sequence: The six components of motion as estimated 
by the local coordinates estimator are showed in solid lines. The corresponding ground truth is in 
dotted lines. 



Motion error components for the rocket sequence 
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Figure 13: Error in the motion estimates for the rocket sequence. All components are within 5% 
of the true motion. 

Figure 14: Norm of the pseudo-innovation process of the local estimator for the rocket scene. 
Convergence is reached in less than 5 steps. 


